Building Scalable, Hierarchical ROOFs
using Distributed Hash Tables

Rohit Sardesal and Neeraj Kumar
Huawel Technologies India Pvt. Ltd.
Bangalore

Why Edge Computing ?

Increasing COSIS of shipping large volumes of
data Reduce Cost

to the cloud for processing and storage.

Trust & Security Data secu rity is critical and hence orgs prefer local data storage.
Real time decision making isthe key !
Data transmission to cloud increases latency and prohibits Ultra Low Latenc

acting in real-time.

Offline, No cloud connectivity is common in IoT environments ,
but mission-critical 10T applications like connected vehicles need to
Independent function without this !

KubeEdge - A Kubernetes Native Edge Cloud
Computing Framework

@ App
KubeEdge :
L ——kubecti—» KubeEdge(Cloud Part)
Qﬁijtonholler*

KubeEdge(Edge Part)
0OS + Runtime

Containers

Driver/SDK

Devices

Pod/Volume/... I Y (@) @‘
MetaManager [&——— | EdgeHub
T I
Data Devices J‘
Store DeviceTwin R EEEEEEE— EventBus Bl

MQTT Broker

https://github.com/kubeedge/kubeedge
/

IEEE P1931.1: ROOF COMPUTING

Framework for Realtime Computing for Flexible backhaul
interoperability computing security and privacy and services

I

@

Context Security

trrorrtrorrro 1r

Various access & Realtime and Security in Big data & evolving
data protocols offline support constrained nodes applications

“A Standard for an Architectural Framework for Real-time Onsite Operations
Facilication (ROOF) for the Internet of Things”

ROOF Microservices Platform

>
—

Data path

Control path

Context Builder /

Analytics Pipeline(s) %

=
Executor
: A
|
|
i
| Security
vy Y
Message Distributor » Data Storage
l T A
< Messaging Bus >
|
Device protocol services (BLE, ZigBee , CoAP ec)
A
. 0 Southbound devices and
“ & ! actuators

Blockchain in ROOF

It seems natural to use blockchain in ROOF as a validation mechanism for secure

device provisioning and management, however there are a few challenges in adapting

blockchain to an 10T infrastructure.

- Limited compute power and memory on the ‘things’ preclude replicating and
validating against a universal ledger necessary for non-repudiation.

- An action/transaction performed by an agent (device) under certain context may be
constrained by SLA/QoS and should not wait for consensus related delays.

Beyond Blockchain — Distributed Hash Tables

The idea of hashing is to distribute the entries (key/value
pairs) across an array of buckets. Given a key, the algorithm

computes an index that suggests where the entry can be hash
found: keys function buckets
. (]
[BRTIEmE 0l | 521-8976
index = f(key, array_size) 7C 02 [5211234
Lisa Smith D_3 -
Often this is done in two steps: 13
P sandrabee ——_ _ 541[210655
15

hash = hashfunc(key)
index = hash % array_size

A distributed hash table does this in a distributed setting (nodes are buckets) and has
following performance concerns:

» Load balancing (nodes are uniformly loaded)

» Fault-tolerance (nodes might fail or leave the s/m, data should not be lost)

» Efficiency of lookups and inserts — O(log(N))

» Locality (communicating nodes should preferably closer to one another in the underlying
n/w topology)

Beyond Blockchain — Distributed Hash Tables

* Developers: 1. Stoica, D. Karger, F. Kaashoek, H.
Balakrishnan, R. Morris, Berkeley and MIT
* Intelligent choice of neighbors to reduce latency and message
cost of routing (lookups/inserts)
« Uses Consistent Hashing on node’ s (peer’ s) address
« SHA-I(ip address,port) = 160 bit string
* Truncated to m bits
* Called peer id (number between 0 and 2" —1])
* Not unique but id conflicts very unlikely

~~ym . . .
« Can then map peers to one of 2" logical points on a circle

Beyond Blockchain — Distributed Hash Tables

PEER POINTERS (2): FINGER TABLES

Finger Table at N80 0 AR =/
0 96
I 96
2 96 N96 o
39 | ko N32
4 96 80 + 29
5 112 gt
6 16 .

ith entry at peer with id » is first peer with id >= (n + 2i)(mod2"'i :

Beyond Blockchain — Distributed Hash Tables

]

At node n, send query for key 4 to largest successor/finger entry <= &

if none exist, send query to successor(n) s, At or to the anti-clockwise of k
(it wraps around the ring)

N112 N16

Say m=7
All “arrows” are RPCs
(remote procedure calls)

N96

"\fﬁy \

——

)tho has cnn.com/index.html’

7~ (hashes to K42)
T S /‘%

3/

File cnn.comvindex.nm! With

Beyond Blockchain — Distributed Hash Tables

LDHT: Locality-aware Distributed Hash Tables

Weiyu Wu"', Yang Chen®, Xinyi Zhang', Xiaohui Shi*, Lin Cong”, Beixing Deng”, Xing Li"

#Department of Electronic Engineering, Tsinghua University, China

*Department of Electrical Engineering, University of California, Los Angeles, USA

1wuwyoz@mails.tsinghua.edu.cn

Abstract — As the substrate of structured peer-to-peer systems,
Distributed Hash Table (DHT) plays a key role in P2P routing
infrastructures. Traditional DHT does not consider the location
of the nodes for the assignment of identifiers, which will result in
high end-to-end latency on DHT-based overlay networks. In this
paper, we propose a design of locality-aware DHT called LDHT,
which exploits network locality on DHT-based systems. Instead of
assigning uniform random node identifiers in traditional DHT,
nodes in LDHT are assigned locality-aware identifiers according
to their Autonomous System Numbers (ASNs). As a result, each
node will have more nearby neighbors than faraway neighbors in
the overlay. We evaluate the performance of LDHT on different
kinds of typical DHT protocols and on various topologies. The
results show that LDHT improves the traditional DHT protocols
a lot in terms of end-to-end latency, without introducing
additional overhead. It is indicated that LDHT is fit for different
kinds of DHT protocols and can work effectively on all structured
P2P systems including Chord, Symphony and Kademlia.

locality in DHT-based systems. We assign the node identifiers
in a geographic layout manner to ensure nodes close in the
network topology to be close in the identifier space. We use a
node's ASN to generate the prefix of the identifier in order to
make nodes in a same AS have close identifiers. As a result,
nodes in LDHT-based systems will have more close neighbors
than faraway neighbors in the network topology. The end-to-
end latency for the query on the overlay network will thus be
reduced. We use three typical DHT-based systems, Chord [1],
Symphony [2] and Kademlia [3] as the basic DHT protocols to
evaluate our design. According to the simulation results on
different topologies, it is indicated that LDHT can improve the
performance of DHT-based systems on both path length and
Relative Delay Penalty (RDP) significantly, without adding
overlay hops.

The rest of this paper is organized as follows. First we

vrarmanr ralatad swrarls 1 Cantinn IT Than wwra mracant tha dacion

W. Wu et al., "LDHT: Locality-aware Distributed Hash Tables," 2008 International Conference on Information Networking, Busan, 2008, pp. 1-5.
doi: 10.1109/ICOIN.2008.4472811

Beyond Blockchain — Distributed Hash Tables

Heterogeneity and Load Balance
in Distributed Hash Tables

P. Brighten Godfrey and fon Stoica
Computer Science Division, University of California, Berkeley
{pbg.istoica} @cs.berkeley.edu

Abstract— Existing solutions to balance load in DHTs incur
a high overhead either in terms of routing state or in terms of
load movement generated by nodes arriving or departing the
system. In this paper, we propose a set of general techniques and
use them to develop a protocol based on Chord, called Y5, that
achieves load balancing with minimal overhead under the typical
assumption that the load is uniformly distributed in the identifier
space. In particular, we prove that Y, can achieve near-optimal
load balancing, while moving little load to maintain the balance
and increasing the size of the routing tables by at most a constant
factor.

Using extensive simulations based on real-world and synthetic
capacity distributions, we show that Y; reduces the load imbal-
ance of Chord from O{logn) to a less than 3.6 without increasing
the number of links that a node needs to maintain. In addition,
we study the effect of heterogeneity on both DHT's, demonstrating
significantly reduced average route length as node capacities
become increasingly heterogeneous. For a real-word distribution
of node capacities, the route length in Y, is asymptotically less
than half the route length in the case of a homogeneous system.

imbalance to a constant factor. To handle heterogeneity, each
node picks a number of virtual servers proportional to its
capacily. Unfortunately, virtual servers incur a significant cost;
a node with & virtal servers must maintain & sets of overlay
links. Typically &£ = ©(logn). which leads to an asymptotic
increase in overhead.

The second class of solutions uses just a single I per
node [26], [22], [20]. However, all such solutions must re-
assign IDs to maintain the load balance as nodes arrive and
depart the system [26]. This can result in a high overhead
because it involves transferring objects and updating overlay
links. In addition, none of these solutions handles heterogene-
ity directly, although they could be combined with the virtual
server technique.

In this paper, we present a simple DHT protocol, called
Yo, that addresses the above drawbacks. Y5 is based on the
concept of virtual servers, but with a twist: instead of picking

P. B. Godfrey and I. Stoica, "Heterogeneity and load balance in distributed hash tables," Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies., Miami, FL, 2005, pp. 596-606 vol. 1.
doi: 10.1109/INFCOM.2005.1497926

Beyond Blockchain — Distributed Hash Tables
HOLOCHAIN

pp
QmWd8dhDha356sY9

Each App can provide a context under which a device (agent) communicates with other
devices using the same App. All under the same scalable (sharded), fault-tolerant
(parameterized replication), and private (Hash) DHT overlay network.

This is much faster as there is no need for consensus. Holochain not only provides
mechanisms to prevent malicious attacks, but also blocks that agent by broadcasting his
credentials via gossip about the wrongdoing.

Thank you!

