
Building Scalable, Hierarchical ROOFs

using Distributed Hash Tables

Rohit Sardesai and Neeraj Kumar
Huawei Technologies India Pvt. Ltd.

Bangalore

Why Edge Computing ?

Increasing costs of shipping large volumes of

data

to the cloud for processing and storage.

Data security is critical and hence orgs prefer local data storage.

Reduce Cost

Trust & Security

Real time ,

Ultra Low Latency
Real time decision making is the key !

Data transmission to cloud increases latency and prohibits

acting in real-time.

Offline,

Independent

No cloud connectivity is common in IoT environments ,

but mission-critical IoT applications like connected vehicles need to

function without this !

KubeEdge – A Kubernetes Native Edge Cloud
Computing Framework

https://github.com/kubeedge/kubeedge

/

IEEE P1931.1: ROOF COMPUTING

“A Standard for an Architectural Framework for Real-time Onsite Operations

Facilication (ROOF) for the Internet of Things”

ROOF Microservices Platform

It seems natural to use blockchain in ROOF as a validation mechanism for secure

device provisioning and management, however there are a few challenges in adapting

blockchain to an IoT infrastructure.

➢ Limited compute power and memory on the ‘things’ preclude replicating and

validating against a universal ledger necessary for non-repudiation.

➢ An action/transaction performed by an agent (device) under certain context may be

constrained by SLA/QoS and should not wait for consensus related delays.

Blockchain in ROOF

Beyond Blockchain – Distributed Hash Tables

The idea of hashing is to distribute the entries (key/value

pairs) across an array of buckets. Given a key, the algorithm

computes an index that suggests where the entry can be

found:

index = f(key, array_size)

Often this is done in two steps:

hash = hashfunc(key)

index = hash % array_size

A distributed hash table does this in a distributed setting (nodes are buckets) and has

following performance concerns:

• Load balancing (nodes are uniformly loaded)

• Fault-tolerance (nodes might fail or leave the s/m, data should not be lost)

• Efficiency of lookups and inserts – O(log(N))

• Locality (communicating nodes should preferably closer to one another in the underlying

n/w topology)

Beyond Blockchain – Distributed Hash Tables

Beyond Blockchain – Distributed Hash Tables

Beyond Blockchain – Distributed Hash Tables

W. Wu et al., "LDHT: Locality-aware Distributed Hash Tables," 2008 International Conference on Information Networking, Busan, 2008, pp. 1-5.

doi: 10.1109/ICOIN.2008.4472811

Beyond Blockchain – Distributed Hash Tables

P. B. Godfrey and I. Stoica, "Heterogeneity and load balance in distributed hash tables," Proceedings IEEE 24th Annual Joint Conference of the IEEE

Computer and Communications Societies., Miami, FL, 2005, pp. 596-606 vol. 1.

doi: 10.1109/INFCOM.2005.1497926

Beyond Blockchain – Distributed Hash Tables

HOLOCHAIN

Each App can provide a context under which a device (agent) communicates with other

devices using the same App. All under the same scalable (sharded), fault-tolerant

(parameterized replication), and private (Hash) DHT overlay network.

This is much faster as there is no need for consensus. Holochain not only provides

mechanisms to prevent malicious attacks, but also blocks that agent by broadcasting his

credentials via gossip about the wrongdoing.

Beyond Blockchain – Distributed Hash Tables

Thank you!

