Emerging trends in the design of cognitive IoTs over embedded systems

Dr.Manjunath Ramachandra

Objectives

♦A fresh look at the IoT

The issues

Prediction based solution

case study

Agenda

IoT architecture

The IoT: Brain dump

IoT components

IoT components

7

The IoT solution : Component diversity

IOT Solution : Technologies Diversity

IoT solution: Application diversity

Industrial IoT

E health & M health

- global e Health products and services market stands at \$130 billion
- grows to \$160 billion by 2015.

2014, grows to \$23 billion by 2017 • m Health could save 99 billion EUR in

• m Health market account for \$9 Billion in

healthcare costs in the EU

IoT based solution

Step 0: Application Selection

Step 1: authentication

THE SO	CIALMA	
Username: Password:		
Sensor Uploa	id Frequency:	5
ala ala	Save	ö. 💏

Ref: Reid Carlberg

Step 2: Device identification

DEVI			Welcome	Device Mar	nagement	Data Services	Secur	ty A	ldmin	Documentation	Free Account Opproder Service	bichuenema	
¥ Devices	☆ XBee Networks	🖸 Alarms	0 Ope	rations	Schedules	W Carrier							
E E Ø C	Add Devices More •											•	ρ
MAC Address	Sevice ID	IP Address	Device Type		Description		Firmvare Level	User Meta Data		Tapi	Goup Path		
•	0080003-0000000-03000166-0FA47882		TBM Simulated MRI Mad	tine	Created by Th	Social Ulacrina Device Sin					Rost		1
+	0080003-00000000-03000166-61210073		TSM Simulated Rehigered	w	Created by Th	Social Machine Device Sin					Real		
•	0080003-0000000-03000188-68595855	-	TSM Simulated Storage 1	19	Created by Th	Sodal Machine Device Sin					Root		
	0080003-0000000-03000188-F70012A7	10 187 262	The Bodial Machine (OB)	Device Simulator			100				Simuland.	Norices in Apost	1
													6

Step 3: Event set up

ne cription	Phone Low Light			wealum •
cription				
	Detects low light level with iPhone sense	or		
Fire Condition		Reset Condit	ion	
Dia instance	light 💌	Dia instance	light	-
Channel	Juminosity 🔹	Channel	Juminosity	
Туре	Numeric	Туре	Numeric 💌	
Condition	<	Condition	>=	
Value	0.1	Value	0.1	
Timeout	10	Timeout	5	
	Seconds 💌		Seconds 💌	
Value Timeout	0.1 10 Seconds •	Value Timeout	>= • 0.1 5 • Seconds •	

Step 4: Response set up

THE	SOCIAL M	ACHINE.	(Search		Search.						•	The Socia	d Ma	chine	Ð
Home	Device Clouds	Device Groups	Device Types	Social Devices	Alarm Events	Machi	ine Processes	c	hatter Reports	Dashboards	Conne	ctTank	+		
Create Recent	New_	Ho	Machine Process me	ses											
AC1	Temperature Issue	View	All									+ /	Add	New Pro	cess
Low	Tank Level		Machine Process	Device Cloud Na	me	0	AlarmType	4	Created Date	Last Modified Dat		#Tasks	0	Status	φ.
CourtneyElliaTS_ G0080002-000000_		AC Temperature Issue	Rooldman 1@log	in etherios.com		AC Temp Issu	•	9/23/2013 11:10 AM	10/31/2013 7:09	44	4		Active		
€ Ωad € mat	eSampseR@lo		Accu-Chek Patient High Glucose Issue	Rosidman 1@log	an etherios.com		High Glucose Level		12/19/2013 8:34 AM	1/15/2014 8:35 P	8	6		Inactive	

Machine Pro	X Delete Process			
Alarm when luminousi	ty is less than .2			
Status	Active	Device Cloud		
Past 30 days	Ooccurrences	AlarmType	Luminosity	
Save Changes	Cancel			

IOT functional architecture

IOT protocol layers

The Hardware

IoT hardware

IO devices

- Sensors
- actuators:
- LED
- Relays
- Motors
- Linear actuators
- Lasers
- Solenoids
- Speakers
- LCD
- Plasma displays
- Robots

Network devices

- Modem
- Gateway
- Router
- Satellite
- Tower

Processing devices

- Grid
- Cloud
- Embedded processor
- Quantum compute
- PC\Laptop

Memory devices

- Cloud memory
- Flash storage
- Quantum memory

Device Connectivity Protocols

- WiFi
- Bluetooth
- RFID
- ZIGBEE
- NFC
- Ethernet
- LTE
- **G** 3G
- GSM
- CDMA

4G Wireless

Interesting Projections

26

Connectivity: example

	Home gateway	3G/4G	Satellite
Google glass	\checkmark	\checkmark	\checkmark
Temperature sensor			
camera			
Water/liquid gauge			
TV			
Mobile phone			

IoT software

Requirements of WSN (software)

- Smart and autonomous
- ✤ Auto-configuration
- Self monitoring and self-healing
- Anomaly detection and tracking

Communication protocols of IoT

PROTOCOLS	MQTT	CoAP	XMPP	SOAP	UPnP
XML Based	No	No	Communications	Relies on XML	No
			protocol for	information set	
			message-oriented	for its message	
			middleware based	format	
			on XML		
TCP/UDP	TCP	UDP	TCP	Both TCP and	UDP
				UDP	
IPv4/IPv6	IPv4,IPv6	IPv4,IPv6	IPv4,IPv6	IPv4	IPv4,IPv6
M2M support	OASIS	ETSI			
	Standard	Standard			
USAGE	From	Simple	Video, File	Implementation	Permits
	Pervasive	electronic	transfer, gaming,	of web services	networked
	devices to a	devices,	IoT apps such as	In computer	devices to
	server/small	Resource	smart grid & social	networks	seamlessly
	message	constrained	networking		discover each
	broker.	devices	services		other presence
					on network

Event notification service of IoT @work

- ENS acts as a common collector and distributor of events
- Events come from multiple heterogeneous sources
- Devices can subscribe to specific subsets of events

Publish-Subscribe software architectural style

Middleware

- Lies between the technology and the application.
- SOA (Service Oriented Architecture) middleware

Object as a (web)service

Service Management

- Basic set of services :
 - Object dynamic discovery
 - Status monitoring
 - Service configuration
- Functionalities related to QoS

Upnp+ Protocol for IoT

Discovery: Device advertises itself with in a Network & enables discovery

Description: After the discovery, control point hits the URL to get the description(Xml)

Addressing: Auto generation for ease of use
Upnp+ Protocol for IoT

Presentation: focus on Human Machine Interfaces

Eventing: This step is closely coupled with Control actions

Control:

control point ask device services to invoke actions and receive responses

The Subscription Setup Protocol

- Subscription Setup :
 - Role Publisher, Subscriber
 - Subscriber -> Publisher : request [out ID , out metadata]
 - Publisher-> Subscriber : accept [in ID , in metadata , out ID]
 - Publisher -> Subscriber : reject [in ID , in metadata , out ID]

Actions on the nodes

- Nodes can be:
 - Created CreateInstance()
 - Read GetValues()
 - Updated SetValues()
 - Deleted DeleteInstance()
 - Notified Alarming Feature: UPnP state variable event including the node & value of the node

Factors affecting SLA over the IoT

- Variations in platform of application sw (speed of execution)
- ✤ connectivity
- Granularity of software (dictate inter-process communication overhead)
- Database organization (hierarchy and granularity)
- Data retrieve mechanism and policies
- QoS protocol
- Sla policies
- Client Platform
- middle ware

TV white space

- Bursty requests
- Prioritized service
- Flooding

Agenda

Features of the IoT

Issues

The issues

Agenda

solution

Processing issues

Processing issue: Computing power

Resource utilization

CPU usage

Demand monitoring

Short-term burst

Repeated violation

Monitoring-as-a-service:Georgia tech

Sampling of the status

Reduce sampling frequency if violation likelihood less than threshold

Processing Issue: Bursty request

Load pattern

- "Bursty" request patterns especially when high levels of peak utilization.
- The workloads are varied and non-uniform in nature.
- under bursty workload conditions, fractal model can accurately predict bursty request processes
- the fractal model based optimization works better by an average of 30% for resource utilization, power reduction and job completion time.

Bursty traffic

Fractal traffic in Hadoop:

- In HDFS during input file loading and result file writing, high amount of data replication across cluster nodes make traffic bursty
- In data shuffling phase of MapReduce multiple mapper nodes terminate and send their results to reducer nodes with Many to one traffic.

Handling of bursty traffic

Handling the surges

- Flood control:
 - Static server provisioning (dam building) for large time scales and cross-IDC load shifting (water balancing) for small time scales
- load balancers
 - Each client has the visibility of each single resource allocated to it. Balance the load of the application among the resources of the platform. Prevent the occurrence of resource overload and handlre runtime failure of resources
- Add more web server instances, database replications
 - Return after flooding or put to power save mode
- set up web site health monitoring
 - Traffic sensing detect specific resource conditions, such as resource response times and pool membership configuration
- Fractal traffic predictor and controller

Processing Issue: scalability

Balanced and unbalanced workflow structure

High Scalability

Service replication:

- cloning of services during run time to optimize the service load. Also used to support the nodes to achieve QoS especially during large service load.
- enhances service scalability

Service migration:

 Calls for placing a running service on an alternative node when a particular node unable to meet agreed QoS.

VM migration: Resource re-allocation

Re-contextualisation

Resource utilization with scaling of Requests

Initial peak demand changes with scaling

Legend: - . Instantaneous queue without shift – with shift 1 --with shift 2

Monolithic Application

Dynamic resource allocation

Optimal Cloud architecture

Processing issue: Optimal resource utilization

Data routing

- Data routing happens over network switch
- During congestion packets are dropped
- Network buffers management policies can lead to poor latencies (if buffers become too large)
- also leading to a lot of packet droppings and low utilization of links

Sensor cloud example: Packet drop

Working of RED

Packet Drop Probability

Working of predictor

- Prediction tools predicts the congestion based on data flow rate, packet loss etc
- The monitoring tools has option to setup alert for some threshold value, after which an alert is sent to sources
- The weighted random early detection (WRED) running inside switch alert the node to control the flow rate
- Better method is to collect the bandwidth usage from all nodes and switches and create the mapping for switches and nodes to help easily predict the data flow
- Random Early Detection (RED) make scheduling decisions at each switch.
WRED

Performance with RED and 3 step prediction

sl	No.of	Variance with	Variance	Max	Max Queue
	sources	RED	with	queue	with
			prediction	With RED	prediction
1	20	125.2279	106.8508	404	404
2	30	134.0159	120.8611	475	475
3	40	140.5793	128.3137	539	539
4	60	142.8687	111.8134	654	654
5	80	177.0254	126.0417	738	735
6	100	194.5093	138.2350	822	822

Data management issues

Data management issue : security

privacy protection

Data Management issue: Memory

In-place computation

#	Sensor attributes	In place computation	Far off computation
1	Energy	more	less
2	storage	more	less
3	communication	less	more
4	Overall delay	less	more
5	Accuracy	?	?

Data management issue: Physical size

Quantum memory

Data management issue: Access speed

Fog computing

Requirement	Cloud Computing	Fog Computing
Latency	High	Low
Delay Jitter	High	Very low
Location of server nodes	Within the Internet	At the edge of the local network
Distance between the client and server	Multiple hops	One hop
Security	Undefined	Can be defined
Attack on data en route	High probability	Very low probability
Location awareness	No	Yes
Geographical distribution	Centralized	Distributed
Number of server nodes	Few	Very large
Support for Mobility	Limited	Supported
Real-time interactions	Supported	Supported
Type of last mile connectivity	Leased line	Wireless

Data management issue: Analysis

Cognitive components: eg. Dialog system

Dialogue adaptation subsystem Multiple contemporary sessions

Adapt to unknown user

Adapt to returning user

Interruption & resumption

Online ASR adaptation for speaker

Incomplete/fragmented utterances

Emotions & intentions

Power issues

Power issues: Optimal expenditure

Expenditure load balancing

- In Wireless Mesh Networks, by allowing nodes to relay messages for other nodes, the distance that needs to be bridged can be reduced, reducing the energy needed for a transmission.
 - The number of transmissions a node needs to perform increases costing more energy.
 - Decides whether or not to relay traffic. The usage of nodes having low capacity should be avoided for relaying traffic.
 - Routing algorithm provides cheapest route based on number of hops within a mesh network.

Power Issues: Optimal capacity

Energy harvesting

- Ambient energy from light, vibration, and heat may be used to run a low power WSN.
 - generate more than 150μW of power, enough to run a IPv6 routing node in a 802.15.4e network
- More brightly lit areas, such as workstation areas and reading surfaces, have 500 lux of lighting.
 - With 200-300 lux of light, small photovoltaic cells can supply sufficient power to operate an IPv6 router in a 802.15.4e network.
- Thermal Electric Generators (TEGs) produce power from the heat of hot surfaces, such as computer monitors or high-current motors.
- The energy produced from a temperature differences of even 10°C becomes usable as an energy source.
 - The typical difference between internal body temperature and room temperature is about 15° C.

Connectivity issues

Connectivity issue: Varied priority

Qos on cloud App1n	
Cloud Platform Task Scheduler Wrapper	QoS Monitor Collector Predictor

Traffic class

Resources for multiple classes

- 1. Immediate reservation:
 - Resources are provided right away or rejected.
- 2. In-advance reservation:
 - Resources must be available at specified time. Often an a fixed price charge is required to initiate a reservation and another rate is charged for the instances throughout the duration of the reservation.
- 3. Best effort reservation:
 - request are queued and serviced accordingly.
- 4. Auction based reservation: customers bid
 - for a particular configuration. As soon as dynamically adjusted resource price lowers the bid amount the resources are allocated.

Predictor

- Auto-regressive moving average (ARMA) model used for incoming workload
- The forecasting module predicts the work-load ahead of time
- The controller estimates the number of necessary resources (e.g., processing cores)
- The Predictor controller ensure a base level of guaranteed rate,
- Predictor can proportionally share available resources among applications with more demands than their guarantees

Packet marking

Relative QoS

- Need: different goals are set for different entities.
 - Some users take the shortest finishing time as priority,
 - some take the **lowest cost** as priority
 - For some, the goal is to achieve optimal matching between simulation tasks and virtual machines
 - For others, to satisfy the applied multi-dimension **QoS** needs.
- Tiered model
 - different clients get different levels of service
 - Jobs of low-priority clients may be preempted (aborted or suspended) by jobs of high-priority Clients
 - on-demand instances available when there is no demand for reserved instances
 - each client gets an absolute guarantee (for receiving resources and for price paid)

Connectivity issue: device discovery

Ease of plugin

- It's important to immediately know
 - when an IoT device drops off the network and goes offline
 - when that device comes back online
- Presence detection of IoT devices gives an exact, up to the second state of all devices on a network.
 - ability to monitor IoT devices and fix any problems that may arise with the network

Device discovery through upnp

Resolution

	#	Issue	Resolution	
Processing	1	Processing power	Cloud	
	2	Bursty request	Fractal model	
	3	Scalability	Migration & Load balance	
	4	Optimal resource utilization	Prediction based allocation	
Data	5	Memory	Inplace computation	
	6	Security		
	7	Analytics	Cognitive	
	8	Physical size	Qbit	
	9	Speed	Abstraction, fog computing	

Resolution

	#	Issue	Resolution	
Connectivity	10	Device discovery	uonp	
	11	Resource utilization	Traffic shaping	
	12	Varied priority/heterogeneous services	QoS	
	13	Heterogeneous devices(renderers)		
	14	Fading		
	15	Multipath		
	16	Address space	Transition to IPv6 – Internet protocol v6	
Power	17	Optimal expenditure	Computation vs acquisition, power load balance	
	18	Optimal capacity	power loading, Energy Harvesting	
	19	Power Quality		
	20	Charge time & duration		

Agenda

Objective The IoT 3 Issues **Solution** 4 5 **Case study** Conclusion 6

Enterprise Dev environment

Enterprise IoT: Test automation

UI objects

Design Examples

Design using IoT

Parameters

- Right choice of scope
- loTs
- Technologies
- Connectivity & solution
- Design
- Algorithms
- Objects/components
- Stake holders
- features
- Issues

Design issue

- Possible use-cases and solution(technologies, input, output..) around
 - google glass

Best solution for car parking in a lot: It should indicate location of empty slots

Machine Augmented Advisor

network

Hey! Take an umbrella . It is likely to rain in the football ground although Sunny here

Agenda

Key Takeaway

Summary

Optimal utilization of the resources plays a crucial role for the performance of the IoT devices

*Better prediction of the data traffic holds the key for the optimization

Data traffic from devices exhibits a variety of statistical features,

that may be exploited for prediction

*Better organization of the software in to multiple modules helps to achieve enhanced performance

References

- http://surrylearn.surrey.ac.uk
- ETSI, Machine to Machine Communications, http://www.etsi.org/technologies-clusters/technologies/m2m
- Machine-to-Machine Communications, OECD Library, http://www.oecd-ilibrary.org/science-andtechnology/machine-to-machine-communications_5k9gsh2gp043-en
- W3C Semantic Sensor Networks, http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
- Mahboobeh Ghorbani et al Prediction and control of bursty cloud workloads: a fractal framework codes'14