

CMMIDEV/5



**RISC: Secured IoT and Cybersecurity** 

PROTECTED 0 Secure IoT through Framework Design and Deployment considerations Ratnakar Gandhe

## **IOT Penetration**



### Secure IoT Vulnerability of Connected Devices and Systems

Hackers Remotely Kill a Jeep on the Highway-Uconnect Vulnerability



# Secure IoT Vulnerability of Connected Devices and Systems









Secure IoT Standards, Guidelines and Recommendations





# Secure IoT Product and Solutions



#### **Stakeholders**

- Manufacturers
- Service Providers
- System Integrators
- Developers
- Customers



## Framework Security key issues and supply chain of trust

#### Management governance

Responsible for product security/information privacy

#### **Engineered for Security**

Hardware and software take care security threats

Fit for purpose cryptography

Authentication/Authorization/Key Management

Key Issues

Secure network Framework and application

Secure apps, web I/F & server software

#### Secure production processes and supply chain Manufacturing, delivery and installation

#### Secure for customer

Configuration control, software updates, VDS and life cycle mgmt.

Supply of product/ solutions components from variety of sources need to be under consideration (Electronics/Mechanical/Web , mobile apps)



## Framework Risk based process



Mindteck

# Framework Security Requirements compliance



## Framework Requirements compliance samples

Business Security Processes, Policies and Responsibilities

| Requirement                                                                                                                                                | Compliance<br>Class and<br>Applicability | Primary<br>Keyword | Secondary<br>Keyword |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|----------------------|
| The product's processor system has an<br>irrevocable hardware Secure Boot process.                                                                         | M for Class 1<br>and above               | System             | Hardware             |
| The product's processor system has an<br>irrevocable "Trusted Root Hardware Secure<br>Boot".                                                               | M for Class 2<br>and above               | System             | Hardware             |
| The product's processor system has a<br>measured irrevocable hardware Secure Boot<br>process.                                                              | M for Class 3<br>and above               | System             | Hardware             |
| The Secure Boot process is enabled by<br>default.                                                                                                          | M for Class 1<br>and above               | System             | Hardware             |
| Any debug interface (for example, I/O ports<br>such as JTAG) only communicates with<br>authorised and authenticated entities on the<br>production devices. | M for Class 1<br>and above               | System             | Hardware<br>Software |

| Requirement                                                                                                                                                        | Compliance<br>Class<br>and<br>Applicability | Primary<br>Keyword | Secondary<br>Keyword |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|----------------------|
| There is a person or role, typically a board level<br>executive, who takes ownership of and is<br>responsible for product, service and business<br>level security. | M for All<br>classes                        | Business           | Responsibility       |
| There is a person or role, who takes ownership<br>for adherence to this compliance checklist<br>process.                                                           | M for All<br>Classes                        | Business           | Responsibility       |
|                                                                                                                                                                    |                                             |                    |                      |
| The company follows industry standard cyber<br>security recommendations (e.g. UK Cyber<br>Essentials, NIST Cyber Security Framework,<br>ISO27000 etc.).            | M for Class 2<br>and above                  | Business           | Policy               |
| A policy has been established for interacting<br>with both internal and third party security<br>researcher(s) on the products or services.                         | M for All<br>Classes                        | Business           | Policy               |

**Device Hardware & Physical Security** 

Source :IOTSF-IoT-Security compliance Framework release 2.0



# Architecture Hub based architecture



#### **Stakeholders**

- CxO, IoT purchase
  - Informed decision
- IT department
  - Security focused IoT device management
- Developers, OEM
  - IoT management and security needs

#### Classes

- 1. Fully controlled/connected
- 2. Partially controlled/connected
- 3. Information sharing

#### Hub's 3 main Features

- 1. Network Management and Security tools
- 2. Connecting devices securely
- 3. Lifecycle management

Source :IoTSF "IoT-Security-Architecture-and-Policy-for-the-Enterprise-a-Hub-Based-Approach.pdf



Hub

control

### Architecture Hub feature 1 : Network Management and security tools

Network Management and security tools

- Local IoT Network
- Separation of Testing, staging and Live system
- Firewall and Gateways

Local IoT Network

- Hub act as gateway separating Local IoT-Business/ Networks
- Minimize attack surface, address threat vectors

- Separation of testing , staging and live System
  - Separate test and staging furcation – New device may lower the security
  - Manage device setup and connection

- Firewall and Gateways
- To protect network and data flow
- Enable segmentation, routing and traffic monitoring



### Architecture Hub feature 2: Connecting Devices Securely





### Architecture Hub feature 3: Life Cycle Management



# Architecture Why hub based architecture

| Charateristics                                                                           | Hub<br>Architecture | Tree<br>Network | Hub-and-<br>Spoke / Star | Mesh | Ring |
|------------------------------------------------------------------------------------------|---------------------|-----------------|--------------------------|------|------|
| Centralized network management tool                                                      |                     |                 |                          |      |      |
| Hybrid network sub-architectures                                                         |                     |                 |                          |      |      |
| Direct communication with<br>management tool (not through<br>unneeded nodes or pathways) |                     |                 |                          |      |      |
| Information must be shared in a<br>hierarchical manner                                   |                     |                 |                          |      |      |
| Network management tool is resilient to<br>device and network disruptions                |                     |                 |                          |      |      |
| In the event of management point failure, networks and devices can continue functioning  |                     |                 |                          |      |      |
| Central management and information<br>aggregation point                                  |                     |                 |                          |      |      |
| Management tool supports IoT device<br>identity, access and authorization<br>resources   |                     |                 |                          |      |      |
| Management tool supports<br>minimization of attack surface                               |                     |                 |                          |      |      |
| Dedicated device for network and IoT device management                                   |                     |                 |                          |      |      |

Source Enterprise\_IoT-Security-Architecture-and-Policy-for-the-Enterprise-a-Hub-Based-Approach.pdf



# Architecture Support security principles and Threat modeling

#### Hub architecture support to treat STRIDE\* threat model

| Threat                                   | Threat example                                                                       | Treatment                                                                                 | Architecture (Hub)<br>to support                                                |
|------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Spoofing                                 | Address Resolution Protocol<br>(ARP) used to redirect traffic                        | Update and patch device to<br>prevent vulnerability                                       | Authentication &<br>Authorization, Update and<br>Patch                          |
| Tempering                                | Tampering software to modify<br>permissions, install spyware                         | Secure boot and upate by trusted resources                                                | Secure boot, Monitor and audit                                                  |
| Repudiation                              | sensor data modified in transit<br>to colud services                                 | Secure identity of devices and<br>users. PKI to manage and<br>revoke certificates , RoT   | Authentication & Autorisation,<br>Roots of Trust (RoT)                          |
| Inforamation Disclosure (Data<br>Breach) | Diagnostics information<br>containing Enterprise<br>information                      | Traffic monitoring and management, separte IoT/business network                           | Local IoT network, Gateway<br>and firewalls                                     |
| Deniel of Service                        | Using exploits in a device to<br>execute DoS or DDoS attack on<br>another IoT device | Traffic monitoring on IoT<br>netowrk, Gateway and firewall<br>to monior and block traffic | Local IoT network, Monitor and<br>Audit , update and patch                      |
| Elevation of Privilege                   | Unautorized access of a cloud<br>serive provider to get on the<br>IT/IoT network     | Separation of IoT and business<br>ntework                                                 | Local IoT network,<br>Authentication and<br>authorization, Monitor and<br>Audit |

\*Based on IoT deployment may use other models: PASTA, NIST, ISO 27000, OWASP

Security risk in IoT implementation and security principles

| Three Key principles | Key principles |
|----------------------|----------------|
|----------------------|----------------|

- 1. Confidentiality
- 2. Integrity
- 3. Availability
- Connecting device to IoT network\*\*
  - 1. Data need to be private, audited and trusted
  - 2. Timely arrival of data
  - 3. Access or control of device
  - 4. Updating
  - 5. Ownership management
- Who (hub) provides
  - Trust management
  - Layered security
  - Network access/revoke
  - Safe to make data transparent (M&C)
  - Enterprise data info, criticality and safety





# Secure by Design Code of practice/Security mindset



| Stakeholders Responsible for implementation |            |  |  |  |
|---------------------------------------------|------------|--|--|--|
| Device Manufacture                          |            |  |  |  |
| IoT Service Providers                       |            |  |  |  |
| Mobile Application Developers               | $\bigcirc$ |  |  |  |
| Retailers                                   |            |  |  |  |

#### Guiding principles

- 1. To reduce burden : consumer/Supply chain
- 2. Transparency : what security mechanism
- 3. Measurability : Effectiveness
- 4. Facilitating Dialogue: Share best practices
- 5. Resilience: Business continuity, fall back mechanism



# Case study Smart Building Energy Management (Hub based)



Building management with energy efficient operations, fault detection, operational scenario and schedules.

IoT Hub/ Gateway with following features

- Secure boot
- Device Identity Management
- Managing privileges
- Black or whitelisting
- Validating software/Hardware updates
- Routing and traffic monitoring
- Notification, Alerts, Status updates, Report



### Case study Smart Parking with Hub Features (Distributed Hub)



Allows drivers to access parking quickly and efficiently Enables real-time monitoring and management of available parking space, maximizing parking occupancy

#### IoT Hub/ Gateway

- IoT Hub Gateway function distributed .
- Security Management is part of video analytics server





### Case study Secure by design : Hardware and system level



 Concentrated solar power plant mirror controller with modified WiMax protocol

Secure and reliable communication hardware with

- 802.16 phy
- Modified WiMax for security breach
- Protocol on FPGA to achive the high speed of 26 Mbps
- Frequency diversity : Software Defined Radio to operate single hardware in 800MHz to 6 GHz



### References

• Jeep hacking prompts FCA software update to enhance security https://www.autonews.com/article/20150721/OEM06/150729970/jeep-

#### hacking-prompts-fca-software-update-to-enhance-security

- Cybersecurity Vulnerabilities Identified in St. Jude Medical's Implantable Cardiac Devices
  https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm
- Code of Practice for consumer IoT security https://www.gov.uk/government/publications/secure-by-design/code-of-practice-forconsumer-iot-security
- Researchers Find Serious Flaws in WeMo Home Automation Devices https://threatpost.com/researchers-find-serious-flaws-in-wemohome-automation-devices/104300/3/
- The CEO's Guide to Securing the Internet of Things

https://www.business.att.com/content/dam/attbusiness/reports/exploringiotsecurity.pdf

- ENTERPRISE IoT Security Architecture and Policy \*FOR SECURITY ARCHITECTS https://www.iotsecurityfoundation.org/wpcontent/uploads/2018/11/IoT-Security-Architecture-and-Policy-for-the-Enterprise-a-Hub-Based-Approach.pdf
- IoTSF Compliance Framework, Compliance Checklist and Vulnerability Disclosure Guidelines can be found https://iotsecurityfoundation.org/best-practice-guidelines
- ESTABLISHING PRINCIPLES FOR INTERNET OF THINGS SECURITY https://www.iotsecurityfoundation.org/establishing-principlesfor-internet-of-things-security/

## **Confidentiality and Disclaimer Notice**

This document contains confidential information of Mindteck which is provided for the sole purpose of permitting the recipient to evaluate the capabilities submitted herewith. In consideration of receipt of this document, the recipient agrees to maintain such information in confidence and not to reproduce or otherwise disclose this information to any person outside the group directly responsible for evaluation of its contents, except that there is no obligation to maintain the confidentiality of any information: which was known to the recipient prior to receipt of such information from Mindteck, or becomes publicly known through no fault of recipient, or is received without obligation of confidentiality to Mindteck.

This publication is produced by Mindteck for private circulation among selected constituents. It is for informational purposes only. While every effort is made to ensure the information given is accurate, Mindteck will not accept any responsibility for loss or damage to any person resulting from reliance on information presented herein.

All trademarks, trade names, service marks, service names, and images mentioned herein belong to their respective owners, even if not clearly identified.







www.mindteck.com

© 2019Mindteck. All Rights Reserved.